If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-14q+16=0
a = 3; b = -14; c = +16;
Δ = b2-4ac
Δ = -142-4·3·16
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2}{2*3}=\frac{12}{6} =2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2}{2*3}=\frac{16}{6} =2+2/3 $
| 3x+5=-3x+6 | | 0.9p/0.9=5.4 | | 0.9p/0.9=5.5 | | v+2/3=5 | | 213=-y+9 | | 4x+14=3+6x-7 | | (3x-1)(2x+12)=180 | | 2x+-3x+5=180 | | 10.8x=57 | | 40+10e+15e=25e+40 | | 20=p/16 | | 10+4x=x+4 | | 8=j-3 | | 23=y+4 | | 20=a/20 | | 3x+12(2x+6)=5/2(6x+1) | | 7=b/18 | | 252=18m | | 1000=2.5x | | -3+3j=-15 | | 1/2(18x+2)=19 | | -9+-2d=-17 | | 4g-17=3 | | 1.8c+32=80 | | f(3)=-2+4 | | f(0)=-2+4 | | 3x^2/3-4=23 | | .66z=4.25 | | f(-1)=-2+4 | | 3.3(k+1)=19.8 | | 0.5x=-1.5 | | 10/4/5+100/1/5m=57 |